Selective Catalytic Reduction of Nitrogen Oxides by Ammonia over Fe³⁺-Exchanged TiO₂-Pillared Clay Catalysts

R. Q. Long and R. T. Yang¹

Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136

Received November 24, 1998; revised May 12, 1999; accepted May 14, 1999

Fe-exchanged TiO₂-pillared clay (PILC) catalysts were prepared and used for selective catalytic reduction (SCR) of NO_x by ammonia. They were also characterized for surface area, pore size distribution, and by XRD, H₂-TPR, and FT-IR methods. The Fe-TiO₂-PILC catalysts showed high activities in the reduction of NO_x by NH₃ in the presence of excess oxygen. SO₂ further increased the catalytic activities at above 350°C, whereas H₂O decreased the activity slightly. The catalysts were about twice as active as commercial-type V₂O₅-WO₃/TiO₂ catalyst in the presence of H₂O and SO₂. Moreover, compared to the commercial catalyst, the Fe-TiO2-PILC catalysts had higher N₂/N₂O product selectivities (e.g., 0-1% vs 9% N₂O at 400°C) and substantially lower activities (by 74-88%) for SO₂ oxidation to SO₃ under the same reaction conditions. The activity was further increased to over three times that of the vanadia-based catalyst when Ce was added. The high activity and low N₂O selectivity for the Fe-TiO₂-PILC catalysts were attributed to their low activity in the oxidation of ammonia, as compared with vanadia catalysts. XRD patterns of Fe-TiO2-PILC were similar to those of TiO₂-PILC, showing no peaks due to iron oxide, even when the iron content reached 20.1%. The TPR results indicated that iron in the Fe-TiO₂-PILC catalysts with lower iron contents existed in the form of isolated Fe³⁺ ions. The activities of Fe-TiO₂-PILC catalysts were consistent with their surface acidities, which were identified by FT-IR of the NH₃-adsorbed samples. The enhancement of activities by H₂O + SO₂ was attributed to the increase of surface acidity resulting from the formation of surface sulfate species of iron. © 1999 Academic Press

Key Words: selective catalytic reduction; SCR by NH₃, Fe–TiO₂–PILC; pillared clay; pillared clay catalyst for NO reduction.

INTRODUCTION

Nitrogen oxides (NO_x, x=1, 2) resulting from combustion are a major source of air pollution. The major technology for reducing NO emissions from stationary sources is selective catalytic reduction (SCR) of NO_x with ammonia, forming nitrogen and water. In the SCR reaction, catalysts of different compositions have been used (1). The commercial catalysts that are used today are V₂O₅ mixed with WO₃ and/or MoO₃ supported on TiO₂. Although the vanadiumbased catalysts are highly active, major disadvantages remain, such as their toxicity and high activity for the oxidation of SO₂ to SO₃. The SO₃ combines with NH₃ and H₂O and results in the formation of NH₄HSO₄, (NH₄)₂S₂O₇, and H₂SO₄, which cause corrosion and plugging of equipment. The significant selectivity for forming N₂O is another disadvantage of the V₂O₅ based catalysts. Hence there are continuing efforts for developing new catalysts (1).

In addition to V_2O_5 , a large number of other catalysts, such as those containing Fe, Cr, Cu, or Ni oxides, also have high activities for the SCR reaction. Iron-based catalysts are particularly attractive because of their high activity, low cost, and lack of toxicity as compared to V2O5/TiO2 catalysts. Okazaki et al. (2) reported that pure iron oxide showed only a moderate activity, but mixing 5% Nb₂O₅ \cdot xH₂O to Fe₂O₃ significantly increased the activity. The promoting effect by Nb₂O₅ · xH₂O was attributed to an increase in acidity (3). Nobe and co-workers also reported that addition of small amounts of V2O5 and/or Cr2O3 to Fe2O3/TiO2 and Fe₂O₃/Al₂O₃ improved their activities (4, 5). In particular, a ratio of Fe/Cr = 9 yielded the highest NO_x conversion (4). However, the catalytic activities of the above Fe_2O_3 based catalysts were lower than those of the V₂O₅-based catalysts (5). Recently, we have found that high SCR activities, much higher than Fe₂O₃/Al₂O₃ and Fe₂O₃/TiO₂, were obtained on Fe₂O₃-pillared clays and Fe₂O₃/Cr₂O₃ (3/1) doped TiO₂-pillared clays (6, 7). The activity of the latter was also substantially higher than that of the commercial V₂O₅-WO₃/TiO₂ catalyst (7).

Pillared interlayer clays (PILCs), or pillared clays, are two-dimensional layer materials prepared by exchanging the charge-compensating cations between the clay layers with larger inorganic hydroxyl metal cations formed by hydrolysis of metal salts. Upon heating, the metal hydroxyl cations undergo dehydration and dehydroxylation, forming stable metal oxide clusters which act as pillars keeping the silicate layers separated and creating interlayer spacing (gallery) of molecular dimension. Both Lewis and Brønsted acid sites exist on pillared clays. The acidity and acid site types (Brønsted or Lewis) depend on the

¹ Corresponding author. E-mail: yang@umich.edu.

TABLE 1

exchanged cations, preparation method, and starting clay (8–10). PILCs have been studied as catalysts in some acidcatalyzed reactions, e.g., fluid catalytic cracking, alcohol dehydration, and alkylation (9, 10). It is known that surface acidity is very important for the SCR reaction of NO_x by NH₃ (6, 7, 11–13). PILCs, metal oxide doped PILCs and ion exchanged PILCs were synthesized and tested for their activities for SCR in our previous studies (14, 15). It was found that the activity decreased in the order Cr₂O₃–PILC > Fe₂O₃–PILC > TiO₂–PILC > ZrO₂–PILC > Al₂O₃–PILC, and Cr₂O₃–PILC exhibited higher activities than V₂O₅– WO₃/TiO₂ catalyst, but its activity was severely decreased by SO₂ (15).

In this study, a substantial improvement on the SCR activity is achieved on iron ion-exchanged TiO₂-PILC. The reason for choosing TiO₂-PILC is that TiO₂-PILC has the following desirable characteristics: (a) high thermal and hydrothermal stability among all the pillared clays as demonstrated by TGA results (16), (b) large pore sizes that allow further incorporation of active ingredients without hindering pore diffusion (7, 9, 14), (c) intercalating TiO₂ between the SiO₂ tetrahedral layers is a unique way of increasing surface area and acidity of the TiO_2 support (7, 14), and (d) titania-based SCR catalysts have been found to be highly resistant to SO₂ poisoning and also possess durability (7, 14, 17). It is found that the Fe-exchanged TiO₂-PILC catalysts showed higher activities and N₂/N₂O product selectivities for NO_x reduction, but lower activities for SO_2 oxidation to SO_3 , as compared with the commercial-type V₂O₅-WO₃/TiO₂ catalyst. Particularly, the catalytic activities are increased by H_2O and SO_2 , which is attributed to the increase of the surface acidity of the catalysts.

EXPERIMENTAL

Catalyst Preparation

TiO₂-PILC was synthesized by following established procedures (7, 18). The starting clay was a purified montmorillonite, i.e., a purified-grade bentonite powder from Fisher Company, with particles of size less than or equal to 2 μ m. The bentonite has the following compositions: 60.3% SiO₂, 19.1% Al₂O₃, 3.7% Fe₂O₃, 0.2% TiO₂, 1.4% CaO, 2.4% MgO, 2.9% Na₂O, and 0.5% K₂O. The cation exchange capacity (CEC) of the clay was 103 meq/100 g. The pillaring agent, a solution of partially hydrolyzed Ti-polycations, was prepared by first adding TiCl₄ into a 2 M HCl solution. The mixture was then diluted by slowly adding deionized water with constant stirring to reach a final Ti concentration of 0.82 M. The final concentration of HCl was 0.6 M. The solution was aged for more than 8 h at room temperature prior to its use. Eight grams bentonite was dispersed in 2.0 L deionized water and the slurry was stirred for 5 h. The pillaring solution was slowly added into the suspension of clay

Preparation Conditions and Iron Contents of the Fe-TiO₂-PILC Catalysts

Sample	Fe content (wt%)	Preparation conditions
TiO ₂ -PILC	1.53	_
Fe(4)-TiO ₂ -PILC	4.32	Ion exchange 6 h at room temperature (once)
Fe(6)-TiO ₂ -PILC	5.93	Ion exchange 6 h at room temperature (twice)
Fe(8)-TiO ₂ -PILC	7.74	Ion exchange 6 h at 50°C (once)
Fe(20)-TiO ₂ -PILC	20.1	Ion exchange 6 h at 50°C (3 times)
Ce-Fe(5)-TiO ₂ -PILC	5.45	Ce exchange 20 h, then Fe exchange 6 h (twice) at room temperature

with vigorous stirring until the amount of pillaring solution reached that required to obtain a 10 mmol Ti/g clay. The resulting product was left in contact with the solution for 18 h. Subsequently, the clay particles were separated by vacuum filtration and washed with deionized water until the washing liquid was free of chloride ions as indicated by using silver nitrate test. The sample was dried at 120°C for 12 h and then calcined at 350°C for 12 h.

The iron ion-exchanged TiO₂-PILC catalysts were prepared by using a conventional ion exchange procedure. In each experiment, 2 g TiO₂-PILC was added to 200 ml 0.05 M Fe(NO₃)₃ solution with constant stirring. The pH value of the solution was 1.5. Four Fe-TiO₂-PILC samples under different ion exchange conditions were prepared and are summarized in Table 1. Ce-Fe-TiO₂-PILC catalysts were also prepared by exchanging TiO₂-PILC samples with 0.05 M Ce(NO₃)₃ solution for 20 h and then 0.05 M $Fe(NO_3)_3$ solution twice at room temperature; Ce exchange was done first because it was harder than ion-exchange for Fe³⁺. The mixtures were filtered and washed five times with deionized water. The obtained solid samples were first dried at 120°C in air for 12 h, then calcined at 400°C for 6 h. Finally, the obtained samples were ground to 60-140 mesh. The iron contents obtained by neutron activation analysis in TiO₂-PILC, Fe(4)-TiO₂-PILC, Fe(6)-TiO₂-PILC, Fe(8)-TiO₂-PILC, Fe(20)–TiO₂–PILC, and Ce–Fe–TiO₂–PILC samples were 1.53 wt%, 4.32 wt%, 5.93 wt%, 7.74 wt%, 20.1 wt%, and 5.45 wt%, respectively (Table 1). The cerium content in Ce–Fe(5)–TiO₂–PILC was 0.51 wt%.

Besides pillared clay catalysts, V_2O_5 - WO_3 /TiO₂ catalyst (4.4% V_2O_5 -8.2% WO_3 /TiO₂) was also used for comparison. The catalyst was prepared by incipient wetness impregnation as described elsewhere (12). The V_2O_5 - WO_3 /TiO₂ catalyst had the same composition and surface area as a European commercial SCR catalyst as described by Tuenter *et al.* (19). Also, this catalyst had nearly identical SCR activity and behavior as that of the commercial SCR catalyst made by a major U.S. catalyst manufacturer (7).

Catalyst Characterization

Powder X-ray diffraction (XRD) was conducted with a Rigaku Rotaflex D/Max-C system with Cu $K\alpha$ ($\lambda = 0.1543$ nm) radiation. The samples were loaded on a sample holder with a depth of 1 mm. XRD patterns were recorded in the range $2\theta = 2-45^{\circ}$.

A Micromeritics ASAP 2010 micropore size analyzer was used to measure the N₂ adsorption isotherms of the samples at liquid N₂ temperature (-196° C). The specific surface areas of the samples were determined from the linear portion of the BET plots ($P/P_0 = 0.05-0.20$). The pore size distribution was calculated from the desorption branch of the N₂ adsorption isotherm using the Barrett–Joyner–Halenda (BJH) formula, because the desorption branch can provide more information about the degree of blocking than the adsorption branch (20). Prior to the surface area and pore size distribution measurements, the samples were dehydrated at 350°C for 6 h.

In each H₂-TPR (temperature-programmed reduction) experiment, 0.1 g sample was loaded into a quartz reactor and then pretreated in a flow of He (40 ml/min) at 400°C for 0.5 h. After the sample was cooled down to room temperature in He, the reduction of the sample was carried out from 30 to 700°C in a flow of 5.34% H₂/N₂ (27 ml/min) at 10°C/min. The consumption of H₂ was monitored continuously with a thermal conductivity detector. The water produced during reduction was trapped in a 5A molecular sieve column.

Catalytic Activity Measurement

The SCR activity measurement was carried out in a fixedbed quartz reactor. The reaction temperature was controlled by an Omega (CN-2010) programmable temperature controller. Either 0.2 or 0.1 g catalyst was used in this work. The flue gas was simulated by blending different gaseous reactants. Two sets of flow meters were used to control the flow rates of the individual reactants. He, NH₃/He, and NO/He gases were controlled by rotameters, whereas SO_2 /He and O_2 were controlled by mass flow meters (FM 4575 Linde Division). The typical reactant gas composition was as follows: 1000 ppm NO, 1000 ppm NH₃, 2% O₂, 1000 ppm SO₂ (when used), 8% water vapor (when used), and balance He. The total flow rate was 500 ml/min (ambient conditions) and the GHSV (gas hourly space velocity) was 113 000 l/h or 226 000 l/h. The premixed gases (1.01%) NO in He, 1.00% NH₃ in He, and 0.99% SO₂ in He) were supplied by Matheson. Water vapor was generated by passing He through a heated gas-wash bottle containing deionized water. The tubings of the reactor system were wrapped with heating tapes to prevent formation and deposition of ammonium sulfate/bisulfate and ammonium nitrate. The NO and NO₂ concentrations were continually monitored by a chemiluminescent NO/NO_x analyzer (Thermo Electro Corporation, Model 10). To avoid errors caused by the

oxidation of ammonia in the converter of the NO/NO_x analyzer, an ammonia trap containing phosphoric acid solution was installed before the sample inlet to the chemiluminescent analyzer. The products were also analyzed by a gas chromatograph (Shimadzu, 14A) at 50°C with a 5A molecular sieve column for N₂ and a Porapak Q column for N₂O. Hence the nitrogen balance and the product selectivities for N₂ and N₂O could be obtained. All the data were obtained after 5 min when the SCR reaction reached steady state.

SO₃ Analysis

To measure the amount of SO_3 from SO_2 oxidation during the SCR reaction, a conventional wet analysis method was adopted. With the same reactor used for measuring the catalyst SCR activity, the effluent was bubbled through a solution containing BaCl_2 and HCl. After 12–24 h runs at $375^\circ C$ under the conditions of 1000 ppm NO, 1000 ppm NH₃, 2% O₂, 8% H₂O, 1000 ppm SO₂, and GHSV = 113000 l/ h, SO₃ was quantitatively captured and precipitated as BaSO₄ by the BaCl₂ solution. Since a small amount of ammonium sulfates (resulting from reactions of SO_3 , H_2O , and NH₃) might have been deposited on the tubings between the SCR reactor and the BaCl₂ solution, we washed the tubings with deionized water which was collected in the BaCl₂ solution after the reaction. The BaSO₄ precipitate was collected on an ashless filter paper which was burned along with the precipitate in a crucible, so the amount of the precipitate was accurately measured.

FT-IR Characterization

Infrared spectra were measured with a Nicolet Impact 400 FT-IR spectrometer with a TGS detector. Self-supporting wafers of 1.3 cm diameter were prepared by pressing 20 mg samples and were loaded into a high-temperature IR cell with BaF₂ windows. The wafers were treated at 450°C for 30 min in a flow of He (99.9998%, 100 ml/min) and then cooled down to room temperature. At each temperature, i.e., 25, 100, 200, 300, 350, and 400°C, the background spectrum of sample was recorded in He. Adsorption of NH₃ was performed at room temperature in a flow of 1.00% NH₃/He (100 ml/min) for 30 min followed by purging for 15 min with He. The sample was subsequently heated in a flow of He step by step. At each temperature, the spectrum was recorded by accumulating 100 scans at a spectral resolution of 4 cm⁻¹. The NH₃ adsorption on the samples pretreated with H_2O and SO_2 at a high temperature (400°C) was also studied in this work.

RESULTS

XRD Analysis

X-ray powder diffraction patterns of the starting clay (bentonite), TiO_2 -pillared bentonite, and iron ion-exchanged TiO_2 -pillared bentonites are shown in Fig. 1. XRD

FIG. 1. XRD patterns of bentonite, TiO2-PILC, and Fe-TiO2-PILC catalysts.

patterns of smectite clays (e.g., bentonite) generally show basal 001 reflection and two-dimensional diffraction hk only, and other hkl diffractions are usually not observed (21). The d_{100} peak for the unpillared bentonite was at $2\theta = 7.7^{\circ}$. The diffraction at 19.7° (d = 0.45 nm) was the summation of hk indices of (02) and (11), and the diffraction at 35.0° (d = 0.26 nm) was the summation of hk indices of (13) and (20) (9, 21). The peak at 26.5° (d = 0.34 nm) was the diffraction of (101) from quartz impurity. Upon intercalation, the d_{100} peak disappeared and the intensities of the other peaks decreased. Pillared clays that exhibit no (001) reflection have been referred to as delaminated pillared clays in the literature (10, 22). The delaminated pillared clays usually show larger pore diameter than laminated pillared clays. This will increase the diffusion rates for SCR. The broad peak at $2\theta = 25.3^{\circ}$ was assigned to (101) diffraction of anatase TiO₂. The XRD patterns of the Fe-TiO₂-

PILC samples were similar to those of TiO_2 -PILC, and no peak for Fe₂O₃ was observed, even when the Fe content reached 20.1% in Fe(20)-TiO₂-PILC. This indicated that the Fe₂O₃ formed in hydrolysis of iron ions at 50°C and then calcination at high temperature was dispersed well on the surface of TiO₂-PILC.

Main Characteristics of Fe–TiO₂–PILC

The BET surface areas, pore volumes, and pore size distributions of the Fe–TiO₂–PILC catalysts are summarized in Table 2 and Fig. 2. The TiO₂–PILC showed a BET surface area of 310 m²/g, which is much larger than that of unpillared bentonite (30 m²/g). After iron ion-exchange and calcination at 400°C for 6 h, the surface areas of Fe–TiO₂–PILC decreased to 246–237 cm²/g, as shown in Table 2. The pore volumes of all the samples were about 0.3 cm³/g. Each of

TABLE 2

Characterization of the Catalysts

Sample	Surface area (m²/g)	Pore volume (cm ³ /g)	Bimodal pore diameters (nm)	H ₂ /Fe (TPR) (mol/mol)
TiO ₂ -PILC	310	0.32	2.2, 3.7	0.46
Fe(4)-TiO ₂ -PILC	246	0.29	2.3, 3.7	0.49
Fe(6)-TiO ₂ -PILC	245	0.31	2.4, 3.7	0.49
Fe(20)–TiO ₂ –PILC	237	0.33	2.7, 3.6	—

the samples showed a bimodal macropore size distribution. The TiO_2 -PILC had distributions with two maxima at 2.2 and 3.7 nm (Fig. 2). After iron ions were exchanged with TiO_2 -PILC, there was a decrease in the macropore volume at both the two peaks, but the macropore volume for the smaller pore decreased more sharply with the increase of iron content. In contrast, the pore volume of the bigger pore (>5 nm) increased with iron content.

The reducibility of the TiO_2 -PILC and Fe– TiO_2 -PILC catalysts was characterized by H₂-TPR analysis. As shown in Fig. 3, a weak reduction peak at 605°C appeared on the TiO_2 -PILC sample, which is attributed to the reduction of iron because other species, e.g., TiO_2 , SiO_2 , Al_2O_3 , MgO,

FIG. 2. Pore size distribution for TiO₂-PILC and Fe-TiO₂-PILC catalysts.

FIG. 3. H₂-TPR profiles of TiO₂-PILC and Fe-TiO₂-PILC catalysts.

CaO, and Na₂O, can not be reduced by H₂ under this condition. Fe(4)-TiO₂-PILC and Fe(6)-TiO₂-PILC showed one peak at 434°C and a shoulder at about 370°C, which can be assigned to the reduction of iron species at two different sites. The H₂ consumptions expressed as the ratio of H₂/Fe for the three samples are near 0.5 (Table 2), indicating that the Fe species are reduced from +3 to +2. Considering the facts that pure Fe₂O₃ will be reduced to metallic iron at about 530° C by H₂ in one step and the ratio H₂/Fe is 1.5 (23), we can reasonably deduce that iron in the three samples existed in the form of isolated Fe^{3+} ions. For Fe(20)-TiO₂-PILC, one peak at 396°C and a shoulder at 356°C were also detected, but the TPR profile did not return to the base line at 700°C (Fig. 3). The continuous consumption of H_2 suggests that the iron species in the Fe(20)-TiO₂-PILC sample was not reduced completely at 700°C.

SCR Catalytic Activity

The pure TiO₂–PILC showed little activity for NO_x reduction at 250–450°C. For instance, only 16.0% NO_x conversion was obtained at 400°C under the conditions of 1000 ppm NO, 1000 ppm NH₃, 2% O₂, and GHSV = 113 000 l/h. However, all of the Fe–TiO₂–PILC catalysts showed very high NO_x conversions under the same conditions, as shown in Table 3. For Fe(4)–TiO₂–PILC, the SCR activity increased with temperature at 300–450°C, while for other Fe–TiO₂–PILC catalysts with higher iron contents,

the NO_x conversions increased with temperature at first, passing through a maximum at 375 or 400°C, then decreased slightly at higher temperatures. At lower temperatures (e.g., 300°C), the activity increased with iron content. The activities of the Fe–TiO₂–PILC catalysts were higher than that of the 4.4% V₂O₅–8.2% WO₃/TiO₂ catalyst at higher reaction temperatures (\geq 375°C). In addition, no or little N₂O was formed on the Fe–PILC catalysts in the SCR reaction. The product selectivities for N₂ on the Fe–TiO₂–PILC catalysts were significantly better than those of the 4.4% V₂O₅–8.2% WO₃/TiO₂ catalyst, especially at higher temperatures. The nitrogen balance was above 95% in this work.

The SCR activity can also be represented quantitatively by turnover frequency (TOF) and first-order rate constant (k) (since the reaction is known to be first order with respect to NO under stoichiometric NH₃ conditions on a variety of catalysts (1)). Assuming a plug flow reactor (in a fixed bed of catalyst) and freedom from diffusion limitation, the rate constant can be calculated from the NO_x conversion (X) by

$$k = -\frac{F_0}{[NO]_0 W} \ln(1 - X),$$
 [1]

where F_0 is the molar NO feed rate, $[NO]_0$ is the molar NO concentration at the inlet (at the reaction temperature), and W is the catalyst amount (g). TOF is defined as the number of NO_x molecules converted per Fe per second. From the NO_x conversions and Fe contents or catalyst amounts in the above catalysts, TOF and first-order rate constants were calculated and compared in Table 3. Note that, because both V₂O₅/TiO₂ and WO₃/TiO₂ are active in the SCR reaction (1), we did not calculate the TOF of 4.4% V₂O₅-8.2% WO₃/TiO₂ catalyst. From Table 3, we can see that the TOF of the Fe–TiO₂–PILC catalysts decreased with the increase of Fe content. The *k* value of Fe(6)–TiO₂–PILC was 27% higher than that of the commercial vanadia catalyst at 400°C.

Effects of H₂O and SO₂

Because the resistance to H_2O and SO_2 is an important factor for the SCR reaction, we also studied the effects of H_2O and SO_2 on the catalytic performance of the Fe-TiO₂-PILC and 4.4% V_2O_5 -8.2% WO_3/TiO_2 catalysts. After 8% H_2O and 1000 ppm SO_2 were added to the reactants, the NO_x conversions decreased at low temperatures (e.g., 300°C) on these catalysts (comparing Table 3 with Table 4). At temperatures above 350°C, the catalytic activities increased significantly on the Fe-TiO₂-PILC catalysts in the presence of H_2O and SO_2 . The maximum NO_x conversion reached 95-98% on the Fe-TiO₂-PILC catalysts, which was more (8–10%) than that of the commercial V_2O_5 - WO_3/TiO_2 catalyst. Judging from the values of the first-order rate constant *k* at 400°C, the Fe-TiO₂-PILC catalysts were about twice as active as the vanadium catalyst

5

Catalyst	Temperature (°C)	NO _x conv. (%)	Selectiv	/ity (%)	$TOF^{b} \times 10^{3} (s^{-1})$	<i>k^c</i> (cm ³ /g/s)
			N_2	N_2O		
Fe(4)-TiO ₂ -PILC	300	52.5	100	0	1.16	59.6
	350	78.5	100	0	1.74	134
	375	86.2	100	0	1.91	179
	400	90.0	100	0	1.99	217
	450	91.0	100	0	2.01	243
Fe(6)-TiO ₂ -PILC	300	57.0	100	0	0.920	67.6
	350	83.5	100	0	1.35	157
	375	90.2	100	0	1.45	210
	400	92.5	99.5	0.5	1.49	244
	450	89.0	99.4	0.6	1.44	223
Fe(8)-TiO ₂ -PILC	300	69.5	99.1	0.9	0.858	95.1
	350	86.0	98.7	1.3	1.06	171
	375	89.0	98.6	1.4	1.10	200
	400	89.0	98.4	1.6	1.10	208
	450	83.5	97.4	2.6	1.03	182
Fe(20)-TiO ₂ -PILC	300	75.3	98.9	1.1	0.358	112
	350	88.0	98.8	1.2	0.418	185
	375	89.0	98.6	1.4	0.423	200
	400	87.0	98.5	1.5	0.413	192
	450	80.0	97.2	2.8	0.380	163
Ce-Fe(5)-TiO ₂ -PILC ^d	300	45.0	100	0	1.57	95.8
	350	77.5	100	0	2.71	260
	375	89.5	100	0	3.13	408
	400	91.5	100	0	3.20	464
	450	90.0	99.4	0.6	3.15	465
$4.4\% V_2 O_5 - 8.2\% WO_3/TiO_2$	300	82.0	98.6	1.4	_	137
	350	87.0	97.1	2.9	_	177
	375	88.0	95.2	4.8	_	192
	400	87.0	91.8	8.2	_	192
	450	68.0	81.3	18.7	_	115

Catalytic Performance of Fe-TiO₂-PILC Catalysts in the Absence of H₂O and SO₂^a

^{*a*} Reaction conditions: 0.2 g catalyst, $[NO] = [NH_3] = 1000$ ppm, $[O_2] = 2\%$, He = balance, total flow rate = 500 ml/min, and GHSV = 113 000 l/h.

^bTOF (turnover frequency) is defined as the number of NO_x molecules converted per Fe per second.

^c First-order rate constant, as defined in the text, calculated by Eq. [1].

^d0.1 g catalyst was used.

under the same conditions with SO_2 and H_2O . The maximum k values of the Fe–TiO₂–PILC catalysts were also higher than those of Fe₂O₃/TiO₂, Fe₂O₃/Al₂O₃, Fe₂O₃/ TiO₂-PILC, and Fe₂O₃ + Cr_2O_3 /TiO₂-PILC catalysts (6, 7). Moreover, H₂O and SO₂ increased slightly the product selectivities to N₂ on the three catalysts, which may be attributed to a decrease of NH₃ oxidation by O₂. The improvement of catalytic activity by the presence of H₂O and SO₂ was attributed to the increase of surface acidity of the catalysts, as supported by FT-IR evidence shown in the next section. In fact, H₂O and SO₂ have different effects on the catalytic activity for the SCR reaction. In a separate experiment, H₂O alone decreased the activity of Fe–TiO₂–PILC at low temperatures, as shown in Fig. 4. As the reaction temperature was increased, the negative effect diminished. However, SO_2 had little effect on NO_x conversion at low temperatures for Fe–TiO₂–PILC, but it increased the NO_x conversion at high temperatures. Hence, the total effect of H₂O and SO₂ on the Fe–TiO₂–PILC catalysts for the SCR reaction showed a decrease in activity at low temperatures but an increase at high temperatures.

Effect of Ce Promoter

As seen in Tables 3 and 4, Ce–Fe(5)–TiO₂–PILC was very active in the SCR reaction. Although only 0.1 g catalyst (i.e., GHSV = 226 000 l/h) was used, very high NO conversions were still obtained. Judging from the TOF and *k* values, the activities for this catalyst were much higher than those of Fe–TiO₂–PILC catalysts both with and without H₂O and SO₂. This indicates that cerium is a good promoter for the Fe–TiO₂–PILC catalysts in the SCR reaction. Further study

Catalyst	Temperature (°C)	NO _x conv. (%)	Selectiv	/ity (%)		
			N_2	N_2O	$\mathrm{TOF}^b imes 10^3 (\mathrm{s}^{-1})$	<i>k^c</i> (cm ³ /g/s)
Fe(4)-TiO ₂ -PILC	300	39.5	100	0	0.873	40.3
	350	90.0	100	0	1.99	201
	375	96.0	100	0	2.12	292
	400	98.1	100	0	2.17	373
	450	97.1	100	0	2.15	358
Fe(6)-TiO ₂ -PILC	300	46.9	100	0	0.756	50.7
	350	92.4	100	0	1.49	224
	375	97.0	100	0	1.56	318
	400	98.0	99.4	0.6	1.58	368
	450	96.2	99.2	0.8	1.55	331
Fe(8)-TiO ₂ -PILC	300	52.5	99.5	0.5	0.648	59.6
	350	91.0	99.3	0.7	1.12	210
	375	94.0	99.0	1.0	1.16	255
	400	95.0	98.8	1.2	1.17	282
	450	90.0	98.5	1.5	1.11	233
Fe(20)-TiO ₂ -PILC	300	66.6	99.2	0.8	0.361	87.8
	350	91.8	99.1	0.9	0.436	218
	375	94.0	98.9	1.1	0.447	255
	400	95.5	98.5	1.5	0.454	292
	450	90.5	97.8	2.2	0.430	238
$Ce-Fe(5)-TiO_2-PILC^d$	300	37.0	100	0	1.30	74.0
	350	85.5	100	0	2.99	336
	375	94.0	100	0	3.29	510
	400	96.0	100	0	3.36	606
	450	95.0	99.5	0.5	3.33	606
$4.4\% V_2 O_5 8.2\% WO_3 \text{/Ti}O_2$	300	76.0	98.9	1.1	_	114
	350	87.0	98.1	1.9	_	177
	375	88.0	96.9	3.1	_	192
	400	87.0	94.8	5.2	_	192
	450	72.0	90.2	9.8	_	129

 TABLE 4

 Catalytic Performance of Fe-TiO₂-PILC Catalysts in the Presence of H₂O and SO₂^a

^{*a*}Reaction conditions: 0.2 g catalyst, $[NO] = [NH_3] = 1000$ ppm, $[O_2] = 2\%$, $[H_2O] = 8\%$, $[SO_2] = 1000$ ppm, He = balance, total flow rate = 500 ml/min, and GHSV = 113 000 l/h.

^bDefined in Table 3.

^cDefined in Table 3.

^d0.1 g catalyst was used.

on the promoting role of cerium is in progress. The maximum activity of Ce–Fe(5)–TiO₂–PILC was more than three times that of the commercial V_2O_5 –WO₃/TiO₂ catalyst in the presence of H₂O and SO₂.

Effect of O2

Previous studies of SCR catalysts have shown the importance of oxygen in the reaction (1). The effect of oxygen on catalytic activity was also studied in this work. As shown in Fig. 5, Fe–TiO₂–PILC showed low activity for the reduction of NO by NH₃ at 300–400°C in the absence of oxygen. However, when a little O₂ was introduced to the reactants, NO_x conversion increased sharply. When O₂ concentration was more than 0.5%, NO_x conversion showed no further change. This indicated that O₂ played a significant promoting role in the SCR reaction. The importance of O₂ was also verified by another experiment. After O_2 was shut off from the reactants at 375°C, the NO_x conversion declined sharply (Fig. 6). This is similar to the behavior on iron oxide doped catalysts (1, 5), but different from supported vanadia catalysts (1). On vanadia catalysts, NO conversion declined steadily over a period of time after O_2 was turned off. The different transient behaviors to O_2 indicated a different reaction mechanism for the Fe–TiO₂–PILC catalyst. The lattice oxygen may not be involved in the SCR reaction (as in the case for the vanadia catalyst) while the adsorbed oxygen species on the surface may play an important role for the pillared clay catalyst.

SO₂ Oxidation Activity

Oxidation of SO_2 to SO_3 causes severe problems for the SCR reaction due to the formation of sulfuric acid,

FIG. 4. Effect of H_2O and SO_2 on the catalytic activity for Fe(6)– TiO₂–PILC catalyst. Reaction conditions: 0.2 g catalyst, $[NO] = [NH_3] =$ 1000 ppm, $[O_2] = 2\%$, $[H_2O] = 8\%$, $[SO_2] = 1000$ ppm, He = balance, total flow rate = 500 ml/min, and GHSV = 113 000 l/h.

ammonium sulfate, and other compounds, which result in corrosion and plugging of the reactor and heat-exchangers (1). Vanadia-based catalysts have a high SO₂ oxidation activity, which has been a major concern in SCR operations. Efforts have been made either to add certain oxides (such as WO₃ or GeO₂) to V_2O_5 catalyst or to use non- V_2O_5 catalysts for the purpose of decreasing SO₂ oxidation activity while maintaining high NO_x reduction activity (1). Using the wet chemical method described in the foregoing to quantitatively measure the amounts of SO₃ generated in the reaction effluents, the conversions for SO₂ to SO₃ were 1.0, 1.2, 2.1, and 8.0%, respectively, for the Fe(4)-TiO₂-PILC, Fe(6)-TiO₂-PILC, Fe(20)-TiO₂-PILC, and 4.4% V₂O₅-8.2% WO₃/TiO₂ catalysts. The catalysts containing iron yield much lower SO₃ (by 74-88%) than the V₂O₅-based catalyst. Results by Clark et al. (24), in their study of alumina-supported iron oxide and vanadium oxide catalysts, also showed that Fe₂O₃ was less active in SO₂ oxidation than V₂O₅.

Surface Acidity of the Catalysts

The surface acidity and the strength of acid can be determined by using ammonia as a probe molecule. Such information was obtained by studying the FTIR spectra of the adsorbed NH₃. The spectra of adsorbed ammonia at room temperature on the samples pretreated at 450°C in He for 30 min are shown in Fig. 7. A strong band at 1451 cm^{-1} and three weaker bands at 1670, 1596, and 1242 cm⁻¹ were detected on the TiO₂-PILC sample (Fig. 7). The bands at 1670 and 1451 cm^{-1} were due to the symmetric and asymmetric bending vibrations of NH₄⁺ that was chemisorbed on the Brønsted acid sites, while the bands at 1596 and 1242 cm⁻¹ could be assigned to asymmetric and symmetric vibrations of the N-H bonds in NH₃ coordinately linked to Lewis acid sites (25-27). When iron ions were exchanged to TiO₂-PILC, the intensities of the ammonia absorption bands were found to decrease slightly. For all the samples, there were more Brønsted acid sites than Lewis acid sites at room temperature. With an increase in temperature, the intensities of the above bands decreased, as shown in Fig. 8, indicating desorption of NH₃. Upon heating to 350°C, no NH⁺₄ or coordinated NH₃ were detected on the surface of the Fe(6)–TiO₂–PILC catalyst.

The fresh Fe(6)–TiO₂–PILC was treated at 400°C in a flow of 5% H₂O/He for 15 min and then cooled to room temperature in H₂O/He. A strong band centering at 1630 cm⁻¹ appeared (not shown), which can be attributed to O–H bending vibration of adsorbed water. After the sample adsorbed NH₃ for 30 min at room temperature, the band due to adsorbed H₂O became weaker, while a strong band at 1461 cm⁻¹ and three weaker bands at 1687, 1597, and

FIG. 5. Effect of O_2 concentration on the catalytic activity for Fe(6)– TiO₂–PILC catalyst at different temperatures. Reaction conditions: 0.2 g catalyst, [NO] = [NH₃] = 1000 ppm, [O₂] = 0–4%, He = balance, total flow rate = 500 ml/min, and GHSV = 113 000 l/h.

FIG. 6. Transient response on Fe(6)–TiO₂–PILC upon switching off and on O₂ at 375°C. Reaction conditions: 0.2 g catalyst, $[NO] = [NH_3] =$ 1000 ppm, $[O_2] = 2\%$ (when used), He = balance, total flow rate = 500 ml/min, and GHSV = 113 000 l/h.

1231 cm⁻¹ appeared (Fig. 8). This suggested that ammonia displaced some of the adsorbed water to form coordinated NH₃ and/or consumed some of the surface hydroxyl groups to form NH₄⁺. As compared with the He-pretreated Fe(6)–TiO₂–PILC, the NH₄⁺ band at 1461 cm⁻¹ on the H₂O-pretreated sample was slightly stronger (Fig. 8). This result suggests that H₂O did not inhibit the adsorption of ammonia on the Fe–TiO₂–PILC surface under SCR reaction conditions.

After Fe(6)–TiO₂–PILC was treated at 400°C for 15 min in a flow of SO₂/H₂O/O₂ (1000 ppm SO₂, 2% O₂, 5% H₂O, and He as balance) followed by purging for 10 min by He, a strong peak at 1364 cm^{-1} and two shoulders at 1303 and 1237 cm⁻¹ appeared, which suggested that surface sulfate species were formed on the Fe-TiO₂-PILC catalyst (as shown in Fig. 9). The 1364 and 1237 cm^{-1} bands were assigned to asymmetric and symmetric S=O stretching frequencies of an "organic" sulfate species which has covalent S=O double bonds. The characteristics of the "organic" sulfate species are the remarkably high S=O stretching frequencies (asymmetric at 1440-1350 cm⁻¹ and symmetric at about 1230 cm⁻¹) (28, 29). The band at 1303 cm⁻¹ was attributed to a chelating bidentate inorganic SO_4^{2-} bond to iron which has only ionic SO bonds with a partial double bond character. When the temperature was decreased, the intensities of the "organic" sulfate bands (1364 and

1237 cm⁻¹) decreased, while the band (1303 cm⁻¹) of inorganic sulfate species became stronger and shifted gradually to lower wavenumbers (Fig. 9). This suggested a structural transformation from "organic" sulfate to inorganic sulfate due to interactions with residual water (28). At room temperature, the chelating bidentate inorganic sulfate became the dominating sulfate species and a peak at 1632 cm⁻¹ due to adsorbed H₂O appeared on the sample. Similar results were also obtained on the other Fe-TiO₂-PILC catalysts. In contrast, only a weak peak at 1357 cm⁻¹ was detected on TiO₂-PILC after it was treated in a flow of $SO_2 + O_2 + H_2O/He$ mixture at 400°C for 15 min (Fig. 9), indicating TiO₂-PILC alone does not form a significant amount of sulfate at 400°C. When the sample was cooled to room temperature, two weak peaks at 1628 cm^{-1} (due to adsorbed H_2O) and 1347 cm⁻¹ (due to sulfate species) were detected on the TiO₂-PILC sample (Fig. 9).

As shown in Fig. 10, after the Fe–TiO₂–PILC samples (that were pretreated by $SO_2 + O_2 + H_2O/He$) adsorbed NH₃ for 30 min at room temperature followed by purging with He for 15 min, the sulfate band at 1266 cm⁻¹ shifted to 1236 cm⁻¹. At the same time, a very strong band at 1453 cm⁻¹ and two weaker bands at 1670 and 1598 cm⁻¹ appeared. This indicates that the surface sulfate species

FIG. 7. FT-IR spectra of chemisorbed NH $_3$ at 25°C on TiO $_2$ -PILC and Fe–TiO $_2$ -PILC catalysts.

increased the Brønsted acidity of the three Fe–TiO₂–PILC samples significantly. The transfer of the electrons from the adsorbed ammonia to the sulfate species resulted in a decrease in the S–O vibration frequencies. The band at 1242 cm⁻¹ due to symmetric vibration of the NH₃ coordinated to Lewis acid sites was overlapped by the sulfate band at 1236 cm⁻¹. The Brønsted acidity of the TiO₂–PILC pretreated by SO₂ + O₂ + H₂O/He only showed a slight increase as compared to the fresh TiO₂–PILC, as shown in Fig. 10. This is consistent with the above result that little sulfate species formed on this sample after it was treated by SO₂ + O₂ + H₂O/He at 400°C.

When the NH₃-adsorbed Fe(6)–TiO₂–PILC (that was pretreated by SO₂ + O₂ + H₂O/He at 400°C) was heated in a flow of He, the ammonia began to desorb from the sample surface and resulted in a gradual decrease in the intensity of NH₄⁺ (Fig. 11). At the same time, the band at 1234 cm⁻¹ became broader and shifted to higher wavenumbers. This suggested that a transformation occurred from inorganic sulfate to "organic" sulfate due to the removal of molecular water. At 350°C, one can still see clearly NH₄⁺ on the Fe(6)–TiO₂–PILC surface (Fig. 11). This indicates that the surface sulfate species also enhanced the acid strength of the Fe–TiO₂–PILC because no NH₄⁺ ions were detected on

FIG. 8. FT-IR spectra of chemisorbed NH_3 on Fe(6)-TiO₂-PILC at different temperatures. Asterisk indicates sample pretreated by H_2O/He .

FIG. 9. FT-IR spectra at different temperatures of Fe(6)–TiO₂–PILC and TiO₂–PILC pretreated by $SO_2 + O_2 + H_2O/He$ at 400°C.

the fresh sample at this temperature (Fig. 8). At 400° C, only sulfate species were detected on the Fe–TiO₂–PILC surface.

DISCUSSION

Catalytic Performance for NO_x Reduction and Characteristics of Fe–TiO₂–PILC

TiO₂-PILC was studied as SCR catalyst by ammonia in our previous study (15), but it showed only moderate activities for NO_x reduction between 200 and 450°C. When iron oxide was doped (7, 14) or iron ions were exchanged with TiO_2 -PILC(14), the activities for NO_x reduction increased markedly. It is evident that iron oxide and iron ions on the TiO₂-PILC played an important role in this reaction. At lower temperatures (e.g., 300° C), NO_x conversion increased with increasing iron content in the Fe-TiO₂-PILC catalysts. However, at higher temperatures, NO_x conversions were lower on the catalysts with higher iron contents (Tables 3 and 4). For all the catalysts, water vapor decreased their activities, while SO_2 or $SO_2 + H_2O$ improved the catalytic activities at high temperatures (Fig. 4 and Table 4). The Fe-TiO₂-PILC catalysts showed about twice the activity as compared to the commercial V₂O₅-WO₃/TiO₂ catalyst in

FIG. 10. FT-IR spectra of chemisorbed NH_3 at $25^{\circ}C$ on TiO_2 -PILC and Fe-TiO_2-PILC catalysts pretreated by $SO_2 + O_2 + H_2O/He$ at $400^{\circ}C$.

the presence of H₂O and SO₂. Moreover, the Ce-promoted Fe-TiO₂-PILC showed more than three times the activity of the commercial catalyst. (The role of Ce will be addressed in a separate study.) The product selectivities for N₂ on the Fe-TiO₂-PILC catalysts were also higher than that for the commercial catalyst, especially at high temperatures (Tables 3 and 4). The latter yielded much more N₂O at high temperatures (e.g., 450°C). In the SCR reaction, N₂O results from oxidation of NH₃ by O₂ and/or partial reduction of NO_x by NH_3 (1). Vanadia catalysts are very active in the oxidation of ammonia to form N₂, N₂O, and NO, and hence result in a sharp decrease in NO_x conversion due to the consumption of ammonia by O_2 at 450°C. By comparison, the Fe-TiO₂-PILC catalysts showed low N₂O selectivities and high NO_x conversions at high temperatures (e.g., 450° C), which suggests that they had lower activities for ammonia oxidation. It has been reported that Fe₂O₃ was less active in the oxidation of ammonia than V_2O_5 (30). Compared to the commercial catalyst, the activities for SO₂ oxidation (to SO₃) of the Fe–TiO₂–PILC catalysts were also significantly lower (by 74-88%).

In this work, the ion exchange process was performed under the condition of pH 1.5. The $Fe(NO_3)_3$ solution contains about 75% Fe^{3+} and 25% $Fe_2(OH)_2^{4+}$ ions at room temperature (31). They can exchange with cations in TiO₂–

PILC, i.e., mainly H⁺, and also Na⁺, K⁺, and Mg²⁺. After the Fe-exchanged TiO₂–PILC samples were calcined at 400°C, some Fe₂(OH)₂⁴⁺ was decomposed to Fe₂O₃ and Fe³⁺ via

$$2 \operatorname{Fe}_2(\operatorname{OH})_2^{4+} \to \operatorname{Fe}_2\operatorname{O}_3 + 2 \operatorname{Fe}^{3+} + \operatorname{H}_2\operatorname{O} + 2 \operatorname{H}^+.$$
 [2]

Hence, the iron in the Fe(4)-TiO₂-PILC and Fe(6)-TiO₂-PILC catalysts with lower iron contents existed mainly in the form of isolated Fe^{3+} ions, as shown by the TPR results (Fig. 3). Ion exchange with pillared clay has been widely studied. Kukkadapu and Kevan (32) studied the cupricion-exchanged Al₂O₃-pillared laponite by using electron spin resonance (ESR) and electron spin echo modulation (ESEM) methods, and found that Cu²⁺ was directly anchored to alumina pillars. In the V-doped titania-pillared clay, Bahranowski et al. (33) also reported that the V dopant was bound to the titania pillars, from ESR results. From these results, it is reasonable to suggest that the Fe^{3+} ions were also probably bound to titania pillars in the Fe-TiO₂-PILC catalysts. For Fe(8)-TiO₂-PILC and Fe(20)-TiO₂-PILC catalysts, the ion exchange process was carried out at 50°C. Under that condition, some iron ions would be hydrolyzed to iron hydroxide and precipitated on the surface of TiO₂-PILC. This led to higher iron contents on the two samples. The iron oxide would block some of the smaller

FIG. 11. FT-IR spectra at different temperatures of chemisorbed NH_3 on Fe(6)–TiO₂–PILC pretreated by SO₂ + O₂ + H₂O/He at 400°C.

pores in the TiO₂–PILC samples, as evidenced by the pore size distribution data (Fig. 2). When the iron content was increased to a high value, e.g., 20.1% in the Fe(20)–TiO₂–PILC sample, iron oxide would aggregate and form some big pores by themselves, as shown in Fig. 2. From the results above, the activities (i.e., NO_x conversion, TOF, and *k*) on Fe(4)–TiO₂–PILC and Fe(6)–TiO₂–PILC were higher than those on Fe(20)–TiO₂–PILC and Fe₂O₃-doped TiO₂–PILC (7). This suggests that iron ions were more active than iron oxide in the TiO₂–PILC.

Relationship between Catalytic Activity and Surface Acidity

It has been accepted that, in the SCR reaction, ammonia is adsorbed on the Brønsted or Lewis acid sites to form NH⁺₄ or coordinated NH₃, then gaseous or adsorbed nitric oxides react with NH_4^+ or coordinated NH_3 to form N_2 and H₂O, although some different mechanisms were proposed (1, 13, 35-40). Hence the surface acidity of the catalyst is very important for the SCR reaction of NO_x by NH_3 (6, 7, 11-13). We now focus on its effect on the catalytic activity for NO_x reduction. As shown in Fig. 7, both Brønsted acid sites and Lewis acid sites exist in the TiO₂-PILC, with a larger proportion being Brønsted acid sites at room temperature. Pillars are the major sources for Lewis acidity on pillared clays (9). It is well known that Lewis acid sites exist on TiO_2 (13, 25, 41). Two sources for Brønsted acidity in pillared clays have been discussed in the literature. One derives from the structural hydroxyl groups in the clay layer (42). The most likely proton site for some smectites (e.g., montmorillonite) is located at the Al(VI)-O-MgO linkage, where Al(VI) is the octahedrally coordinated Al, and the Mg is one that has substituted an Al in the octahedral layer. Another source of proton derives from the cationic oligomers which upon heating decompose into metal oxide pillars and liberate protons. It has been reported that both Lewis and Brønsted acidities decrease with temperature of calcination (10, 42). The disappearance of Brønsted acidity is attributed to the migration of protons from the interlayer surfaces to the octahedral layer within the clay layer where they neutralize the negative charges at the substitution atoms (such as Mg). However, it is known that upon exposure to NH₃ the migration is reversed so the proton is again on the surface to form ammonium ions. When iron ions were exchanged with TiO₂-PILC, the Brønsted acidity decreased slightly. This suggests that some H⁺ in the pillared clay were substituted by iron ions. With an increase in iron content, Brønsted acidity decreased (Figs. 7 and 10). This is in agreement with the decrease in TOF with increasing iron content (Tables 3, and 4). On the Fe-TiO₂-PILC catalysts, there was also a larger proportion of Brønsted acid sites than Lewis acid sites at room temperature. This is different from Fe₂O₃ and other Fe₂O₃-doped catalysts, e.g.,

Fe₂O₃/MgO, where only Lewis acid sites exist on the surface (4, 5, 35). Recently, Ito *et al.* (43) studied Ce-exchanged mordenite SCR catalyst by *in situ* IR. They observed that the NH₃ coordinated to the Lewis acid sites reacted with NO⁺ at 100°C, but NH₄⁺ ions bonded to Brønsted acid sites were stable; they did not react with nitrito species (NO₂⁻) until the temperature was increased to above 300°C. This suggests that coordinated NH₃ is more easily oxidized by nitrogen oxide species than NH₄⁺ ions. This may be used to explain the result that Fe–TiO₂–PILC showed much higher activities at high temperatures than Fe₂O₃ and Fe₂O₃-doped catalysts, because coordinated NH₃ is also more easily oxidized by oxygen than NH₄⁺.

The H₂O molecules could adsorb on the surface of Fe– TiO₂–PILC. But after introducing ammonia, the adsorbed H₂O molecules were gradually displaced by ammonia. This is attributed to the fact that ammonia has a stronger basicity than H₂O. This suggests that water vapor will not inhibit the adsorption of ammonia on the Fe–TiO₂–PILC surface under the SCR reaction conditions. The decrease in NO_x conversion at lower temperatures in the presence of H₂O or SO₂ + H₂O may be attributed to its inhibition to the desorption of the product H₂O from the surface, which is similar to the phenomenon on V₂O₅/TiO₂ catalyst (44).

When Fe-TiO₂-PILC catalysts were treated at 400°C in a flow of $SO_2 + O_2 + H_2O/He$, their Brønsted acidities and acid strengths increased significantly (Figs. 7, 8, 10, and 11). It is known that, when some metal oxides, such as Fe_2O_3 , TiO_2 , and ZrO_2 , are treated by H_2SO_4 or $(NH_4)_2SO_4$ followed by calcination at high temperatures, or are treated by SO_2/O_2 at high temperatures, they will show very strong acidities and are thus referred to as superacid (29). XPS and IR measurements showed that sulfate species formed on the sample surface (29). When Fe-TiO₂-PILC was treated at 400°C in a flow of SO₂ + O₂ + H₂O/He mixture, SO₂ was oxidized to SO₃ by O₂ on the surface and a sulfate species was formed. These were identified in the above SO₂ oxidation and IR experiments (Fig. 9). The formation of surface sulfate increased the surface acidity of the Fe-TiO₂-PILC catalysts. Consequently, the adsorption amount of ammonia increased and also the adsorbed NH_4^+ ions were hard to desorb from the surface. Because TiO₂-PILC pretreated by $SO_2 + O_2 + H_2O/He$ showed little increase in the surface acidity (Figs. 7 and 10), the increase of surface acidity on the Fe–TiO₂–PILC by the SO₂ treatment was attributed to the increase of acidity sites on iron ions or iron oxide. This also indicates that iron ions and iron oxide were more easily sulfated by SO₂/O₂ than TiO₂ in the Fe-TiO₂-PILC samples. The sulfate ions on iron oxide showed a characteristic IR absorption band at near 1375 cm^{-1} (28). In the case of sulfate ions, S=O has a covalent double bond and has a much stronger affinity to electrons as compared with that of a simple metal sulfate; hence, the Lewis acid strength of metal ions becomes substantially stronger by the inductive

M = Fe, Ti

FIG. 12. Model for Brønsted acid sites and Lewis acid sites on sulfated iron oxide and titanium dioxide.

effect of S=O in the complex. A model for the acid sites is shown in Fig. 12. When a water molecule is bonded to the Lewis acid site, the Lewis acid site becomes a Brønsted acid site. This will increase the surface acidity of the catalysts containing iron and titania. The increase in the surface acidity will give rise to an increase in the catalytic activity. At low temperatures, SO₂ cannot be oxidized to SO₃ and thus sulfate ions cannot be formed. In this case, acidity cannot be increased. The decrease in activity for NO_x reduction at low temperatures by the presence of H₂O and SO₂ is mainly due to the inhibition of H_2O . In another experiment, when Fe(6)–TiO₂–PILC was pretreated by $SO_2 + O_2 + H_2O/He$ for 30 min at 400°C, and then decreased to room temperature in He and subsequently used for the SCR reaction, it was found that the pretreated catalyst showed higher NO_x conversions than the fresh catalyst, e.g., 74.0% vs 57.0% at 300°C, 97.0% vs 83.5% at 350°C, and 98.0% vs 90.2% at 375°C. This result also indicates the promoting role of surface sulfate species and the importance of surface acidity for SCR reaction on the Fe–TiO₂–PILC catalysts.

CONCLUSIONS

The iron ion-exchanged TiO₂-PILC catalysts showed very high activities in the reduction of NO_x by NH_3 in the presence of excess oxygen. H₂O and SO₂ further increased the activity at high temperatures (i.e., above 300°C). A similar enhancement effect by H₂O and SO₂ was also observed for the Fe-ZSM-5 catalyst (45, 46). The Fe-TiO₂-PILC catalysts were about twice as active as the commercial V_2O_5 -WO₃/TiO₂ catalyst in the presence of H₂O and SO₂. With Ce promoter, the activity was over three times that of the commercial catalyst. Moreover, as compared to V₂O₅-WO₃/TiO₂, the catalyst had higher N₂/N₂O product selectivities (e.g., 0–1% vs 9% N₂O at 400°C) and substantially lower activities (by 74-88%) for SO₂ oxidation to SO₃ under the same reaction conditions. The high activity and low N₂O selectivity on the Fe-TiO₂-PILC catalysts were attributed to their low activity in the oxidation of ammonia, as compared with vanadia catalysts. XRD measurements showed the same patterns for Fe–TiO₂–PILC and TiO₂–PILC, and no additional peaks due to iron oxide were detected on Fe– TiO_2 –PILC. The activities of the Fe– TiO_2 –PILC were well

consistent with their surface acidities. The improvement in activities by $H_2O + SO_2$ was attributed to the increase of the surface acidity resulting from the formation of surface sulfate species of iron.

ACKNOWLEDGMENT

This work was supported by Electric Power Research Institute.

REFERENCES

- 1. Bosch, H., and Janssen, F., Catal. Today 2, 369 (1988).
- 2. Okazaki, S., Kuroha, H., and Okuyama, T., Chem. Lett., 45 (1985).
- 3. Tanabe, K., Chem. tech., 628 (1991).
- Bauerle, G. L., Wu, S. C., and Nobe, K., *Ind. Eng. Chem. Prod. Res.* Dev. 17, 123 (1978).
- Wong, W. C., and Nobe, K., *Ind. Eng. Chem. Prod. Res. Dev.* 25, 179 (1986).
- Chen, J. P., Hausladen, M. C., and Yang, R. T., J. Catal. 151, 135 (1995).
- 7. Cheng, L. S., Yang, R. T., and Chen, N., J. Catal. 164, 70 (1996).
- 8. Pinnavaia, T. J., Science 220, 365 (1983).
- 9. Burch, R., Catal. Today 2, 185 (1988).
- 10. Figueras, F., Catal. Rev. Sci. Eng. 30, 457 (1988).
- Okazaki, S., Kumasaka, M., Yoshida, J., Kosaka, K., and Tanabe, K., Ind. Eng. Chem. Prod. Res. Dev. 20, 301 (1981).
- 12. Chen, J. P., and Yang, R. T., J. Catal. 125, 411 (1990).
- Topsøe, N. Y., Dumesic, J. A., and Topsøe, H., J. Catal. 151, 241 (1995).
- Yang, R. T., and Cichanowicz, J. E., "Pillared Clays as Catalysts for Selective Catalytic Reduction of NO," U.S. Patent 5,415,850, 1995.
- Yang, R. T., Chen, J. P., Kikkinides, E. S., Cheng, L. S., and Cichanowicz, J. E., *Ind. Eng. Chem. Res* **31**, 1440 (1992).
- Bernier, A., Admaiai, L. F., and Grange, P., *Appl. Catal.* 77, 269 (1991).
- Kato, A., Matsuda, S., Nakajima, F., Imanari, M., and Watanabe, Y., J. Phys. Chem. 85, 1710 (1981).
- 18. Sterte, J., Clays Clay Miner. 34, 658 (1986).
- Tuenter, G., Leeuwen, W. F. V., and Snepvangers, L. J. M., *Ind. Eng. Chem. Prod. Res. Dev.* 25, 633 (1986).
- Tanev, P. T., and Vlaev, L. T., J. Colloid Interface Sci. 160, 110 (1993).
- Bailey, S. W., *in* "Structures of Clay Minerals and Their X-Ray Indentification" (G. W. Brindley and G. Brown, Eds.), Mineralogical Society Monograph, Vol. 5. Mineralogical Society, London, 1980.
- Pinnavaia, T. J., Tzou, M. S., Landau, S. D., and Raythatha, R., J. Mol. Catal. 27, 195 (1984).
- 23. Chen, H.-Y., and Sachtler, W. M. H., Catal. Today 42, 73 (1998).
- Clark, F. T., Springman, M. C., Willcox, D., and Wachs, I. E., *J. Catal.* 139, 1 (1993).
- 25. Kung, M. C., and Kung, H. H., Catal. Rev. Sci. Eng. 27, 425 (1985).
- 26. Topsøe, N. Y., J. Catal. 128, 499 (1991).
- Belokopytov, Y. V., Kholyavenko, K. M., and Gerei, S. V., *J. Catal.* 60, 1 (1979).
- 28. Yamaguchi, T., Jin, T., and Tanabe, K., J. Phys. Chem. 90, 3148 (1986).
- 29. Yamaguchi, T., Appl. Catal. 61, 1 (1990).
- Kosaki, Y., Miyamoto, A., and Murakami, Y., *Bull. Chem. Soc. Japan* 52, 617 (1979).
- Baes, C. F., Jr., and Mesmer, R. E., *in* "The Hydrolysis of Cations." Wiley, New York, 1976.

- 32. Kukkadapu, R. K., and Kevan, L., J. Phys. Chem. 93, 1654 (1989).
- Bahranowski, K., Janas, J., Machej, T., Serwicka, E. M., and Vartikian, L. A., *Clay Miner*. **32**, 665 (1997).
- 34. Eng, J., and Bartholomew, C. H., J. Catal. 171, 27 (1997).
- Ramis, G., Yi, L., Busca, G., Turco, M., Kotur, E., and Willey, R. J., J. Catal. 157, 523 (1995).
- Went, G. T., Leu, L.-J., Rosin, R. R., and Bell, A. T., J. Catal. 134, 492 (1992).
- Ozkan, U. S., Cai, Y., and Kumthekar, M. W., J. Phys. Chem. 99, 2363 (1995).
- Odriozola, J. A., Heinemann, H., Somorjai, G. A., Garcia de la Banda, J. E., and Pereira, P., *J. Catal.* 119, 71 (1989).

- 39. Schraml, M., Wokaun, A., and Baiker, A., J. Catal. 124, 86 (1990).
- Odenbrand, C. U. I., Bahamonde, A., Avila, P., and Blanco, J., *Appl. Catal. B* 5, 117 (1994).
- 41. Chen, J. P., and Yang, R. T., J. Catal. 139, 277 (1993).
- 42. He, M. Y., Liu, Z., and Min, E., *Catal. Today* **2**, 321 (1988).
- Ito, E., Mergler, Y. J., Nieuwenhuys, B. E., Calis, H. P. A., van Bekkum, H., and van den Bleek, C. M., *J. Chem. Soc. Faraday Trans.* 92, 1799 (1996).
- Topsøe, N. Y., Slabiak, T., Clausen, B. S., Srnak, T. Z., and Dumesic, J. A., J. Catal. 134, 742 (1992).
- 45. Ma, A.-Z., and Grunert, W., Chem. Commun., 71 (1999).
- 46. Long, R. Q., and Yang, R. T., J. Am. Chem. Soc. 121, 5595 (1999).